Definite Integrals:

Area under Curve:

The area of the region with a curved boundary can be approximated by summing the areas of a collection of rectangles. Using more rectangles can increase the accuracy of approximation.

Example 1: What is the area of the shaded region R that lies above the x-axis, below the graph of $y=1-x^{2}$, and between the vertical lines $x=0$ and $x=1$?

Sol.: 1. If we divide the region into two rectangles (two sub-intervals each sub interval length $\Delta x=\frac{b-a}{n}=\frac{1-0}{2}=\frac{1}{2}$), and we take the height of

rectangles at the left-end of those sub-intervals.

$$
\therefore A \approx \frac{1}{2} * 1+\frac{1}{2} * \frac{3}{4}=\frac{7}{8}=0.875
$$

We get an upper estimated of the area A. If we use four rectangles we get a better upper estimate.

$$
\therefore \Delta x=\frac{b-a}{n}=\frac{1-0}{4}=\frac{1}{4}
$$

and

$$
\therefore A \approx \frac{1}{4}\left(1+\frac{15}{16}+\frac{3}{4}+\frac{7}{16}\right)=\frac{25}{32}=0.78125
$$

which is still greater than the area A since the rectangles all lies outside the region R.
2. If we take the height of rectangles at the right-end of those sub-intervals,

$$
\therefore A \approx \frac{1}{4}\left(\frac{15}{16}+\frac{3}{4}+\frac{7}{16}+0\right)=\frac{17}{32}=0.53125
$$

This estimate is smaller than the area A since the rectangles all lies inside the region R.

So, the true value of A lies somewhere between these lower and upper sums;

$$
0.53125<A<0.78125
$$

3. Another estimate can be obtained by using rectangles whose heights are the values of f at the midpoint of their bases. This gives an estimate that is between the lower sum and upper sum, but is not clear whether it overestimates or underestimates the true area.
$\therefore A \approx \frac{1}{4}\left(\frac{63}{64}+\frac{55}{64}+\frac{39}{64}+\frac{15}{64}\right)=\frac{1}{4} * \frac{172}{64}=0.671875$

If we increase the subdivisions we obtain:

Number of Sub-intervals	Lower sum	Midpoint sum	Upper sum
$\mathbf{2}$	0.375	0.6875	$\mathbf{0 . 8 7 5}$
$\mathbf{4}$	0.53125	0.671875	$\mathbf{0 . 7 8 1 2 5}$
$\mathbf{1 6}$	0.634765625	0.6669921875	$\mathbf{0 . 6 9 7 2 8 5 6 2 5}$
$\mathbf{5 0}$	0.6566	0.6667	$\mathbf{0 . 6 7 6 6}$
$\mathbf{1 0 0}$	0.66165	0.666675	$\mathbf{0 . 6 7 1 6 5}$
$\mathbf{1 0 0 0}$	$\mathbf{0 . 6 6 6 1 6 6 5}$	$\mathbf{0 . 6 6 6 6 6 7 5}$	$\mathbf{0 . 6 6 7 1 6 6 5}$

Riemann Sums:

Suppose $y=f(x)$ is an arbitrary continuous function over closed interval [a, $b], f(x)$ may have negative as well as positive values.

We subdivide the interval $[a, b]$ into subintervals not necessary of equal width (length). To do so, we choose $n-1$ points $\left\{x_{1}, x_{2}, x_{3} \ldots x_{n-1}\right\}$ between a and b and satisfying

$$
a=x_{o}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b
$$

the set

$$
P=\left\{x_{1}, x_{2}, x_{3} \ldots x_{n-1}\right\}
$$

is called a partition of $[a, b]$
The partition P divides $[a, b]$ into n closed sub intervals,

$$
\left[x_{o}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right]
$$

The first of these subintervals is $\left[x_{o}, x_{1}\right]$, the second is $\left[x_{1}, x_{2}\right]$ and the $\boldsymbol{k}^{\text {th }}$ subintervals of P is $\left[x_{k-l}, x_{k}\right]$, for k an integer between 1 and n.

The width of the first subintervals $\left[x_{o}, x_{1}\right]$ is denoted Δx_{1}, the width of the second $\left[x_{1}\right.$, $\left.x_{2}\right]$ is Δx_{2}, and the width of the $k^{t h}$ is $\Delta x_{k}=x_{k}-x_{k-1}$. If all n subintervals have the equal width, then the common width Δx is equal to

In each subinterval we select some point. The point chosen in the $k^{\text {th }}$ subinterval is called c_{k}. Then on each subinterval we stand a vertical rectangle that stretches from the x-axis to touch the curve at $\left(c_{k}, f\left(c_{k}\right)\right)$. These rectangles can be above or below the x-axis, depending whether $f\left(c_{k}\right)$ is positive or negative, or on it $f\left(c_{k}\right)=0$.

On each subinterval we form the product $f\left(c_{k}\right) . \Delta x_{k}$. This product is positive, negative or zero, depending on the sign of $f\left(c_{k}\right)$.

If $f\left(c_{k}\right)>0$, the product $f\left(c_{k}\right) . \Delta x_{k}$ is the area of a rectangle with height $f\left(c_{k}\right)$ and width Δx_{k}.

If $f\left(c_{k}\right)<0$, the product $f\left(c_{k}\right) \cdot \Delta x_{k}$ is a negative number, the negative of the area of a rectangle with height $f\left(c_{k}\right)$ and width Δx_{k} that drops from the x-axis to the negative number of $f\left(c_{k}\right)$.

Finally we sum all of these products to get

$$
S_{P}=\sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x_{k}
$$

The sum S_{P} is called a Riemann Sum for f on the interval $[a, b]$. There are many such sums, depending on the partition P we choose, and the choice of the point c_{k} in the subintervals.

We define the norm of a partition P, written $\|P\|$, to be the largest of all subinterval widths. If $\|P\|$ is a small number, then all of the subintervals in the partition P have a small width.

Example 1: Partitioning a Closed Interval.

The set $P=\{0.0 .2,0.6,1,1.5,2\}$ is a partition of $[0,2]$. There are five subintervals P : $[0,0.2],[0.2,0.6],[0.6,1],[1,1.5]$ and $[1.5,2]$

The lengths of the subintervals are: $\quad \Delta x_{1}=0.2-0=0.2$,

$$
\begin{aligned}
& \Delta x_{2}=0.6-0.2=0.4 \\
& \Delta x_{3}=0.4 \\
& \Delta x_{4}=0.5 \\
& \Delta x_{5}=0.5
\end{aligned}
$$

and
The longest subinterval length is 0.5 , so the norm of the partition $\|P\|=0.5$. In this example there are two subintervals of this length.

Any Riemann sum associated with a partition of a closed interval $[a, b]$ defines rectangles that approximate the region between the graph of a continuous function f and the x-axis. Partitions with norm approaching to zero lead to collections of rectangles that approximate this region with increasing accuracy.

Example 2: Find the Riemann sum for $f(x)=\sin \pi x$ on the interval $[0,3 / 2]$. Use $n=3$.
Sol.: $\Delta x=\frac{b-a}{n}=\frac{3 / 2-0}{3}=\frac{1}{2} \Rightarrow x_{0}=a=0, x_{1}=\frac{1}{2}, x_{2}=1$ and $x_{3}=b=\frac{3}{2}$

1. Choice of c_{k} : the interval midpoint

$$
c_{1}=\frac{1 / 2+0}{2}=\frac{1}{4}, c_{2}=\frac{1+1 / 2}{2}=\frac{3}{4}, c_{3}=\frac{3 / 2+1}{2}=\frac{5}{4}
$$

The Riemann sum:

$$
\begin{aligned}
\sum_{k=1}^{3} f\left(c_{k}\right) \Delta c_{k}=\sum_{k=1}^{3} \sin \pi c_{k} * \frac{1}{2}= & \frac{1}{2}\left(\sin \frac{\pi}{4}+\sin \frac{3 \pi}{4}+\sin \frac{5 \pi}{4}\right) \\
& =\frac{1}{2}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right)=\frac{\sqrt{2}}{4}
\end{aligned}
$$

2. Choice of c_{k} : left-hand of subinterval

$$
c_{1}=0, c_{2}=\frac{1}{2}, c_{3}=1
$$

The Riemann sum:

$$
\begin{aligned}
\sum_{k=1}^{3} f\left(c_{k}\right) \Delta c_{k}=\sum_{k=1}^{3} \sin \pi c_{k} * \frac{1}{2} & =\frac{1}{2}\left(\sin 0+\sin \frac{\pi}{2}+\sin \pi\right) \\
& =\frac{1}{2}(0+1+0)=\frac{1}{2}
\end{aligned}
$$

3. Choice of c_{k} : right-hand of subinterval

$$
c_{1}=\frac{1}{2}, c_{2}=1, c_{3}=\frac{3}{2}
$$

The Riemann sum:

$$
\begin{aligned}
\sum_{k=1}^{3} f\left(c_{k}\right) \Delta c_{k}=\sum_{k=1}^{3} \sin \pi c_{k} * \frac{1}{2} & =\frac{1}{2}\left(\sin \frac{\pi}{2}+\sin \pi+\sin \frac{3 \pi}{2}\right) \\
& =\frac{1}{2}(1+0-1)=0
\end{aligned}
$$

Area Is Strictly a Special Case

If an integerable function $y=f(x)$ is nonnegative throughout an interval $[a, b]$, each term $f\left(c_{k}\right) \Delta x_{k}$ is the area of a rectangle reaching from the x-axis up to the curve $y=f(x)$. The Riemann sum

$$
S_{P}=\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}
$$

which is the sum of the areas of these rectangles, gives an estimate of the area of the region between the curve and the x-axis from a to b. Since the rectangles give an increasing good approximation of the region as we use subdivisions with smaller and smaller subintervals, we call the limiting value

$$
\lim _{\Delta x \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{x}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{x}=\int_{a}^{b} f(x) d x \text { the area under the curve. }
$$

Note: (remember that when $n \rightarrow \infty \Rightarrow \Delta x \rightarrow 0$)

Definition: If $y=f(x)$ is nonnegative and integerable function over a closed interval $[a, b]$, then the integral of f from a to b is the area of the region between the graph of f and the x-axis from a to b. We sometimes call this number the area under the curve $y=f(x)$ from a to b.

Example 3: Find the value of integral $\int_{-2}^{2} \sqrt{4-x^{2}} d x$ by regarding it as the area under the graph of an appropriately chosen function.

Sol.: We graph the integrand $f(x)=\sqrt{4-x^{2}}$ over the
 interval of integration $[-2,2]$ and see that the graph is semicircle of radius 2 .

The area between the semicircle and the x-axis is

$$
\text { Area }=\frac{1}{2} \pi r^{2}=\frac{1}{2} \pi(2)^{2}=2 \pi
$$

Because the area is also the value of the integral of f from -2 to2:

$$
\int_{-2}^{2} \sqrt{4-x^{2}} d x=2 \pi
$$

The First Fundamental Theorem of Calculus

If the function f is continuous on an interval $[a, b]$, and $F(x)$ is the antiderivative of f, then the function $F(x)=\int_{a}^{x} f(t) d t$ has a derivative at every point on $[a, b]$ and

$$
\frac{d F}{d x}=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Examples: Find $d y / d x$ of the following:

1. $y=\int_{-\pi}^{x} \cos t \cdot d t$

Sol.: $\frac{d}{d x} \int_{-\pi}^{x} \cos t . d t=\cos x$
2. $y=\int_{0}^{x} \frac{1}{1+t^{2}} . d t$

Sol.: $\frac{d}{d x} \int_{0}^{x} \frac{1}{1+t^{2}} . d t=\frac{1}{1+x^{2}}$
3. $y=\int_{1}^{x^{2}} \cos t \cdot d t$

Sol.: $\frac{d}{d x} \int_{1}^{x^{2}} \cos t . d t=\cos x^{2} * \frac{d}{d x}\left(x^{2}\right)=\cos x^{2} * 2 x=2 x \cos x^{2}$
The Second Fundamental Theorem of Calculus (The Integral Evaluation Theorem)

If f is continuous at every point of $[a, b]$ and F is antiderivative of f on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

